Loading...

Biological soil crusts are complex communities consisting of photosynthetically active green algae, cyanobacteria, bryophytes and lichens, heterotrophic fungi, protozoa and bacteria, which cover the top few millimetres of soil.

The organisms and their by-products create a micro-ecosystem, whose ecological function is of great importance in particular on bare soils (e.g. nitrogen fixation by cyanobacteria, primary production, water retention, soil stabilisation or allocation of plant available nutrients).

Although soil crusts are ecologically important, investigations have been mainly focused on arid and semiarid habitats so far. In the first phase we focused on the biodiversity in soil crusts and their function in biogeochemical phosphorus turnover. These correlations will be analysed in greater depth during the current phase.

Picture: The graphic illustrates in the form of a drawing the evolution of different biological soil crusts during millions of years of development of the biosphere.
Evolution of biological soil crusts during millions of years of biosphere development on our planet (from Weber et al. 2016)

We plan to link phosphorous turnover and nitrogen cycling in biological soil crusts to the abundance and diversity of genes coding for selected functions driving N and P transformation processes and relate the data to the structure of the crust communities. This project will improve our understanding on the biodiversity and interactions of ALL organisms in BSCs from forest plots of the BEs.

A combination of metagenomic and fatty acid profiling of the community structure of bacteria, archaea, fungi, cyanobacteria and algae will be evaluated for the first time in taxonomic depth (who is there in what numbers?).

The functional role of BSCs will be evaluated in the biogeochemistry of P and N. The concentrations and chemical species of these elements will indicate whether BSCs act as sink or source for P-and N-compounds and identify the drivers for the unstudied P-biogeochemical cycling in BSCs and their quantitative contribution to the P-fluxes (who is doing what?).


1. Increasing SMI will decrease biodiversity, and interactions in microbial network structures will be reduced.

2. Differences in community structure will affect the functionality of the BSC.

3. Microbial diversity in BSCs in the three BEs is comparable at sites with similar land use intensity.

4. BSC communities are involved in transformation from inorganic to organic fractions in the biogeochemical cycling of P and N.


  • Metagenomic and transcriptomic analyses
  • qPCR targeting specific genes for N- and P-turnover
  • fatty acids analyses
  • total C, N, P determination

Doc
Landnutzung als Faktor für die Struktur und Funktion biologischer Bodenkrusten in mesischen Gebieten
Kurth J. K. (2023): Land use as a driver for the structure and function of biological soil crusts in mesic environments. Dissertation, TU München
More information:  mediatum.ub.tum.de
Doc
Eigenschaften der Tonfraktion und Grünlandbewirtschaftung beeinflussen die Zusammensetzung und Stabilität der organischen Bodensubstanz auf molekularer Ebene
Baumann K., Eckhardt K.-U., Schöning I., Schrumpf M., Leinweber P. (2022): Clay fraction properties and grassland management imprint on soil organic matter composition and stability at molecular level. Soil Use and Management, doi: 10.1111/sum.12815
More information:  doi.org
Doc
Gall C., Ohan J., Glaser K., Karsten U., Schloter M., Scholten T., Schulz S., Seitz S., Kurth J. K. (2022): Biocrusts: Overlooked hotspots in managed mesic soils. Journal of Plant Nutrition and Soil Science 185 (6), 745-751. doi: 10.1002/jpln.202200252
More information:  doi.org
Doc
Treiber der Abundanz von phosphorumsatzkatalysierenden Bakterien in Biologischen Bodenkrusten in Buchenwäldern der gemäßigten Zone
Kurth J., Albrecht M., Karsten U., Glaser K., Schloter M., Schulz S. (2021): Correlation of the abundance of bacteria catalyzing phosphorus and nitrogen turnover in biological soil crusts of temperate forests of Germany. Biology and Fertility of Soils 57, 179–192. doi: 10.1007/s00374-020-01515-3
More information:  doi.org
Doc
Taxonomische und funktionelle Diversität von heterotrophen Protisten in Biokrusten
Khanipour Roshan S., Dumack K., Bonkowski M., Leinweber P., Karsten U., Glaser K. (2021): Taxonomic and Functional Diversity of Heterotrophic Protists (Cercozoa and Endomyxa) from Biological Soil Crusts. Microorganisms 9 (2), 205. doi: 10.3390/microorganisms9020205
More information:  doi.org
Doc
Structure and function of heterotrophic protists in biological soil crusts
Roshan S. K. (2021): Structure and function of heterotrophic protists in biological soil crusts. Dissertation, University Rostock
Doc
Quantifizierung Biologischer Bodenkrusten im Biosphärenreservat Schorfheide-Chorin
Kern K. M. (2019): Quantifizierung Biologischer Bodenkrusten im Biosphärenreservat Schorfheide-Chorin. Bachelor thesis, University Rostock

Project in other funding periods

Picture: The photo shows a close-up of liverwort.
Crustfunction III (Contributing project)
#Soil biology & Element cycling  #Soil Ecology  #FOX  #2023 – 2026  #2020 – 2023  #Nitrogen cycle […]
Picture: The photo shows a close-up of liverwort.
Crustfunction I (Contributing project)
#Soil biology & Element cycling  #2014 – 2017  #Soil hydrology […]

Scientific assistants

Jun.-Prof. Dr. Karin Glaser
Project manager
Jun.-Prof. Dr. Karin Glaser
Technische Universität Freiberg
Prof. Dr. Ulf Karsten
Project manager
Prof. Dr. Ulf Karsten
Universität Rostock
Dr. Stefanie Schulz
Project manager
Dr. Stefanie Schulz
Helmholtz Zentrum München
Dr. Martin Albrecht
Alumni
Dr. Martin Albrecht
Dr. Karen Baumann
Employee
Dr. Karen Baumann
Universität Rostock
Prof. Dr. Michael Schloter
Employee
Prof. Dr. Michael Schloter
Technische Universität München (TUM)
Dr. Julia Kurth
Employee
Dr. Julia Kurth
Helmholtz Zentrum München
Samira Khanipour Roshan
Alumni
Samira Khanipour Roshan
Top