Loading...

RESOILIENCE builds on the emerging issue of resilience as an indispensable prerequisite for developing sustainable management strategies. The ultimate goal is to fill the knowledge gap regarding the resilience and resistance of soil invertebrate communities at the highest level of basic research.


Major aims are (1) to explore innovative routes toward a mechanistic understanding of the structural and functional response of edaphic communities to management disturbances, and (2) to obtain a deep insight into the processes controlling the assembly of invertebrate communities in variable soil environments.

Picture: The collage includes sixteen photographs of soil-dwelling Acari and Collembola taken from a micro-arthropod sample from the Biodiversity Exploratory Greenlands.
A small section of the diversity of a microarthropod sample (soil-dwelling Acari & Collembola) from the greenlands of the Biodiversity Exploratories. The white bar corresponds to 500 µm in each case

Focussing on the range of management intensities occurring at the grasslands of the DFG Biodiversity Exploratories, we want to exploit the unique opportunity of a large-scale long-term approach by comparing our samples taken during our BE work in 2009 and 2011 to samples newly collected in 2018. Sophisticated field and microcosm experiments, which single out crucial aspects of community recovery from soil disturbance, complement this approach by aiming at specifying, extending and validating the results.

Major elements of the innovative RESOILIENCE conceptual framework are trait-based assembly analyses, temporal dimensions of disturbance-induced assembly processes (‘successional assembly’), and transient population dynamics. Parameters determined include all relevant taxa of the soil fauna (mostly at the species level), food web structure, consumer isotopic signatures, soil processes (e.g., GHG release, C and N turnover) as well as microbial diversity and biomass (PLFA). An inherent objective is to use the novel approach of RESOILIENCE for refining statistical tools and developing advanced metrics to analyse and quantify the recovery of soil biota.

Picture: The collage includes six photos of the Resoilience Project's fieldwork. Photo 1 shows five male students in a field working at soil sampling sites. Photo 2 shows research assistant Katharina John kneeling on the ground working at a sampling site. Photo 3 shows research assistant Dennis Baulechner swinging a hammer. Photo 4 shows a vibratory tamper. Photo 5 shows a cylindrical 5-centimeter-diameter drill core in the opened soil sampling container of a core drill. Photo 6 shows a cylindrical twenty-centimeter-diameter drill core in the opened soil sampling container of a core drill.
RESOILIENCE field work: During the field work in the Biodiversity Exploratories, the RESOILIENCE team includes some students (a), who support the research assistants Katharina John (b) and Dennis Baulechner (c) in establishing field experiments, e.g. the application of fertilizer or artificial soil compaction by means of vibratory tampers (d), as well as in taking numerous soil samples (5 cm diameter (e), 20 cm diameter (f)).
Picture: The collage shows six photos of the laboratory work of the Resoilience Project. Photo 1 shows soil cores in extractors, photo 2 shows a dish with extracted mesofauna, photo 3 shows defaunated soil cores in microcosms, photo 4 shows live extracted soil-dwelling invertebrates, photo 5 shows laboratory equipment of the microcosm experiment installation, and photo 6 shows laboratory equipment of the trace gas release measurement installation.
RESOILIENCE Laboratory work: After sampling in the Biodiversity Exploratories, soil cores will be transferred into extractors (a) to extract the mesofauna (b), which will then be taxonomically processed. Another part of the soil cores will be defaunated to be experimentally treated in microcosms (e.g. compacted (c) or fertilized). Subsequently, live extracted soil-living invertebrates will be used (d) to study direct disturbance effects on different soil processes, such as trace gas release (f) in the microcosm experiment (e)

Doc
Birkhofer K., Baulechner D., Diekötter T., Zaitsev A., Wolters V. (2022): Fertilization rapidly alters the feeding activity of grassland soil mesofauna independent of management history. Frontier in Ecology and Evolution 10:864470. doi: 10.3389/fevo.2022.864470
More information:  doi.org
Doc
The Relationship of Microarthropod Communities to Greenhouse Gas Emissions Under Contrasting Land-Use Intensities
Der Zusammenhang von Mikroarthropoden-Gemeinschaften und Treibhausgasen bei variierender Landnutzungsintensität - Ein Mikrokosmos-Experiment
Lill J. M. (2021): The Relationship of Microarthropod Communities to Greenhouse Gas Emissions under Contrasting Land-Use Intensities - A Microcosm Experiment. Master thesis, University Gießen
Doc
Auswirkung anthropogener Störungen auf edaphische Mikroarthropoden in unterschiedlichen Landnutzungsflächen Deutschlands
Plitt A. (2020): Auswirkung anthropogener Störungen auf edaphische Mikroarthropoden in unterschiedlichen Landnutzungsflächen Deutschlands. Master thesis, University Gießen
Doc
Einfluss von Dünger und Bodenverdichtung auf die Überlebensrate von Mikroathropoden nach Besiedlung im Mikrokosmos Experiment
Rippholz P. (2020): Einfluss von Dünger und Bodenverdichtung auf die Überlebensrate von Mikroathropoden nach Besiedlung im Mikrokosmos Experiment. Master thesis, University Gießen
Doc
Resilienz bodenlebender Hornmilben in einem Mikrokosmosexperiment in Abhängigkeit von der Landnutzungsintensität im Grünland
Schmidt L. (2020): Resilienz bodenlebender Hornmilben in einem Mikrokosmosexperiment in Abhängigkeit von der Landnutzungsintensität im Grünland. Master thesis, University Gießen
Doc
Der Einfluss von Bewirtschaftungsintensität auf die Bodenmakrofauna in Grünländern
Gartenbach A. (2019): Der Einfluss von Bewirtschaftungsintensität auf die Bodenmakrofauna in Grünländern. Bachelor thesis, University Gießen

Scientific assistants

Prof. Dr. Volkmar Wolters
Project manager
Prof. Dr. Volkmar Wolters
Justus-Liebig-Universität Gießen
Prof. Dr. Klaus Birkhofer
Project manager
Prof. Dr. Klaus Birkhofer
Brandenburgische Technische Universität Cottbus-Senftenberg
Dr. Andrey Zaytsev
Employee
Dr. Andrey Zaytsev
Justus-Liebig-Universität Gießen
Dr. Dennis Baulechner
Employee
Dr. Dennis Baulechner
Justus-Liebig-Universität Gießen
Katharina John
Employee
Katharina John
Justus-Liebig-Universität Gießen
Top