Loading...

Arthropods, especially insects, are the most diverse group of animals on Earth and influence many ecosystem processes. Overall arthropod abundance and diversity as well as the population dynamics of individual species are related to land use. Spatial and temporal changes in land use are, hence, expected to be important drivers of arthropod diversity and ecosystem processes for which arthropods are central. Thus, it is important to conduct long-term monitoring of arthropod communities in grasslands and forests. In addition to monitoring, experimental manipulations are needed to derive causal inference. Arthropods Core in its present form is part of the Biodiversity Exploratories since 2014. The project is the successor of the previous core projects Invertebrates I (2006-2011) and Arthropods I (2011-2014).


  • Long-term monitoring of arthropods in grasslands and forests to test for the influence of land-use intensity on arthropod abundance and diversity and changes therein.
  • Assembling comprehensive trait data for all collected arthropods to test how species’ characteristics predict relationships with land use.
  • Quantifying ecosystem processes, such as seed depletion, dung decomposition and predation, and testing how variation in process rates are related to land use.
  • Disentangling the role of saproxylic insects in the decomposition of deadwood as part of the BELongDead experiment.
  • Arthropod monitoring in the joint multi-site experiments in forests (FOX) and grasslands (RPs/UPs) to understand the influence of gaps and deadwood (FOX) and of reduced land use (RPs/UPs) on arthropods.
The grassland experiments are sampled with a biocoenometer

All Core Projects provide important basic information on land use, diversity and ecosystem processes (long-term monitoring). This information is made available to the subprojects in each phase for research into more detailed questions.

Data and services provided by Arthropods Core enable to include comprehensive data on arthropods and ecological processes into other research. In particular, arthropods are sampled in forests and grasslands during the whole vegetation period (March–October) as part of the long-term monitoring. Through this monitoring, we not only can quantify short-term but also long-term effects of land use on arthropod diversity in grasslands and forests. In collaboration with other projects, we conduct time series analyses and examine the influence of the surrounding landscape, of land use and of structural variables on arthropod diversity and ecological processes.

 

Services in the current phase

In the 7. phase (2023-2026) Arthropods Core provides the following services:

  • Annual sampling of flying insects with window traps on forest VIPs (all forest EPs are sampled triennially, in this phase in 2023). Abundance information for many arthropod taxa is provided, Coleoptera and Hemiptera are identified to species.
  • Annual sampling of flying insects with window traps in the FOX experiment. Abundance information for many arthropod taxa is provided, Coleoptera and Hemiptera are identified to species.
  • Annual sampling of arthropods in all grassland Eps with sweep-netting. Abundance information for many arthropod taxa is provided, various taxa including Araneae, Coleoptera, Hemiptera and Orthoptera are identified to species.
  • Biennial sampling of arthropods in grassland experiments (RPs/UPs) with biocoenometer (2023, 2025). Identification of the full community with meta-barcoding.
  • Comprehensive trait data (body size, life-history traits) for all collected arthropod species.
  • Annual measuring the ecological processes seed depletion, dung decomposition and predation in all VIPs.
  • Biennial measurement (alternating) of the ecological processes seed depletion, dung decomposition and predation in the FOX experiment and the grassland experiments (RPs/UPs).
  • Coordination of the BELongDead experiment.
  • Triannual measuring of wood decay in all BELongDead logs.
  • Development and enhancement of methods and tools to analyze land-use intensity and effects (LUI).

Services in previous phases

The same services were provided in the 4th and 5th phase of the exploratories (2014–2020), with the exception of our contributions of FOX and grassland experiments that were initiated in the 6th phase (2020–2023). Additionally, we provide data on ground-dwelling arthropods sampled with pitfall traps (2008–2010) and on canopy arthropods sampled with window traps in tree crowns (2008–2012). In 2017, ecological process data (herbivory, seed depletion, dung decomposition, predation) are available for all EPs. From 2010–2022 saproxylic arthropods in all BELongDead logs were sampled annually with deadwood eclectors. Data on land snails and oribatid mites for almost all EPs are available for 2017.

Picture: The collage shows 6 photos of project work on insect monitoring. Photo 1 shows a young scientist in the forest aiming a crossbow upwards to install a cross window trap in the canopy. Photo 2 shows an emergence eclector to record deadwood insects. Photo 3 shows a summer meadow where a young female scientist is catching insects with a landing net while being filmed or photographed by a young man. Photo 4 shows a female scientist in the forest handling a cross window trap hanging from above. Photo 5 shows two young scientists together with tools in the forest preparing to empty the trap. Photo 6 shows a young female scientist and a young male scientist at the open tailgate of a box truck documenting and handling collection containers after emptying a cross window trap.
A: Installation of a cross-window trap in the canopy, B: Emergence selector for recording deadwood insects, C: Documentation of the landing net catch in the grassland for a film about the exploratories, D: Logging of the sampling, E: Preparation for trap emptying in the forest, F: Emptying of a cross-window trap

Among many other important contributions, Arthropod Core provided evidence for large-scale declines of insects in grasslands and forests. Decline in grasslands was more pronounced than in forests and related to species’ dispersal ability and the amount of agricultural land surrounding the plots. For insects in forests, we could show that decline is linked to species’ life history, with large-bodied species, common species and species with high trophic position having declined most. Arthropods Core could also show that there are clear looser and winner species in regard to land-use intensity. Ecological process rates were particularly dependent on climate, and to a lesser extend mediated by land use. The project could also identify tree species whose deadwood can be used to increase the diversity of saproxylic beetles. First results from the grassland experiments indicate that a reduced land-use intensity directly increases the abundance of arthropods.

Black-spotted longhorn beetle (Rhagium mordax)

Doc
Staab M., Gossner M. M., Simons N. K., Achury R., Ambarlı D., Bae S., Schall P., Weisser W. W., Blüthgen N. (2023): Insect decline in forests depends on species’ traits and may be mitigated by management. Communications Biology 6: 338. doi: 10.1038/s42003-023-04690-9
More information:  doi.org
Doc
Achury R., Staab M., Blüthgen N., Weisser W. W. (2023): Forest gaps increase true bug diversity by recruiting open land species. Oecologia 202, 299–312. doi: 10.1007/s00442-023-05392-z
More information:  doi.org
Doc
Einflussfaktoren der Artenzusammensetzung von Totholzkäfergemeinschaften ändern sich während der Sukzession
Seibold S., Weisser W. W., Ambarlı D., Gossner M. M., Mori A., Cadotte M. W., Hagge J., Bässler C., Thorn S. (2023): Drivers of community assembly change during succession in wood-decomposing beetle communities. Journal of Animal Ecology 92 (5), 965-978. doi: 10.1111/1365-2656.13843
More information:  doi.org
Doc
Weisser W. W., Blüthgen N., Staab M., Achury R., Müller J. (2023): Experiments are needed to quantify the main causes of insect decline. Biology Letters 19 (2): 20220500. doi: 10.1098/rsbl.2022.0500
More information:  doi.org
Doc
Kaum Einfluss von Landnutzung auf intraspezifische morphologische Variabilität
Wehner K., Brandt M., Hilpert A., Simons N. K., Blüthgen N. (2023): Little evidence for land-use filters on intraspecific trait variation in three arthropod groups. Web Ecology 23 (1), 35–49. doi: 10.5194/we-23-35-2023
More information:  doi.org
Doc
Der Rückgang von Insekten in deutschen Wäldern – neue Ergebnisse aus den Biodiversitäts-Exploratorien
Staab M. (2023): Der Rückgang von Insekten in deutschen Wäldern – neue Ergebnisse aus den Biodiversitäts-Exploratorien. Beiträge zur Jagd- und Wildforschung 48: 281–297.
Doc
Blüthgen N., Staab M., Achury R., Weisser W. W. (2022): Unravelling insect declines: can space replace time? Biology Letters 18: 20210666. doi: 10.1098/rsbl.2021.0666
More information:  doi.org
Doc
Staab M., Achury R., Ammer C., Ehbrecht M., Irmscher V., Mohr H., Schall P., Weisser W. W., Blüthgen N. (2022): Negative effects of forest gaps on dung removal in a full-factorial experiment. Journal of Animal Ecology 91 (10), 2113-2124. doi: 10.1111/1365-2656.13792
More information:  doi.org
Doc
Insektenherbivorie begünstigt die Etablierung eines invasiven Pflanzenpathogens
Gossner M. M., Beenken L., Arend K., Begerow D., Peršoh D. (2021): Insect herbivory facilitates the establishment of an invasive plant pathogen. ISME Communications 1: 6. doi:10.1038/s43705-021-00004-4
More information:  doi.org
Doc
Ambarlı D., Simons N. K., Wehner K., Kämper W., Gossner M. M., Nauss T., Neff F., Seibold S., Weisser W. W., Blüthgen N. (2021): Animal-Mediated Ecosystem Process Rates in Forests and Grasslands are Affected by Climatic Conditions and Land-Use Intensity. Ecosystems 24, 467–483. doi: 10.1007/s10021-020-00530-7
More information:  link.springer.com
Doc
Bae S., Heidrich L., Levick S. R., Gossner M. M., Seibold S., Weisser W. W., Magdon P., Serebryanyk A., Bässler C., Schäfer D., Schulze E.-D., Doerfler I., Müller J., Jung K., Heurich M., Fischer M., Roth N., Schall P., Boch S., Wöllauer S., Renner S. C., Müller J. (2021): Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi‐taxa and multi‐scale approach. Diversity and Distributions 27 (3), 439-453. doi: 10.1111/ddi.13204
More information:  doi.org
Doc
Forstinventuren zeigen wie multifunktional wirtschaftlich genutzte Wälder sind
Simons N. K., Felipe-Lucia M. R., Schall P., Ammer C., Bauhus J., Blüthgen N., Boch S., Buscot F., Fischer M., Goldmann K., Gossner M. M., Hänsel F., Jung K., Manning P., Nauss T., Oelmann Y., Pena R., Polle A., Renner S. C., Schloter M., Schöning I., Schulze E.-D., Solly E., Sorkau E., Stempfhuber B., Wubet T., Müller J., Seibold S., Weisser W. W. (2021): National Forest Inventories capture the multifunctionality of managed forests in Germany. Forest Ecosystems 8, 5. doi: 10.1186/s40663-021-00280-5
More information:  doi.org
Doc
Wehner K., Renker C., Simons N. K., Weisser W. W., Blüthgen N. (2021): Narrow environmental niches predict land-use responses and vulnerability of land snail assemblages. BMC Ecology and Evolution 21:15. doi: 10.1186/s12862-020-01741-1
More information:  doi.org
Doc
Wehner K., Schuster R., Simons N., Norton R. A., Blüthgen N., Heethoff M. (2021): How land-use intensity affects sexual and parthenogenetic oribatid mites in temperate forests and grasslands in Germany. Experimental and Applied Acarology 83, 343–373. doi: 10.1007/s10493-020-00586-z
More information:  doi.org
Doc
Kann die Multitaxa-Biodiversität in europäischen Buchenwaldlandschaften durch die Kombination verschiedener Managementsysteme erhöht werden?
Schall P., Heinrichs S., Ammer C., Ayasse M., Boch S., Buscot F., Fischer M., Goldmann K., Overmann J., Schulze E.-D., Sikorski J., Weisser W. W., Wubet T., Gossner M. M. (2020): Can multi‐taxa diversity in European beech forest landscapes be increased by combining different management systems? Journal of Applied Ecology 57 (7), 1363-1375. doi: 10.1111/1365-2664.13635
More information:  doi.org
Doc
Vielfältige Reaktionen von Biodiversität auf Heterogenität in Wäldern
Heidrich L., Bae S., Levick S., Seibold S., Weisser W. W., Krzystek P., Magdon P., Nauss T., Schall P., Serebryanyk A., Wöllauer S., Ammer C., Bässler C., Doerfler I., Fischer M., Gossner M. M., Heurich M., Hothorn T., Jung K., Kreft H., Schulze E.-D., Simons N., Thorn S., Müller J. (2020): Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology & Evolution 4, 1204–1212. doi: 10.1038/s41559-020-1245-z
More information:  doi.org
Doc
Influence of forestry on dung beetle diversity
Der Einfluss von Forstwirtschaft auf Dungkäferdiversität
Mohr H. (2020): Influence of forestry on dung beetle diversity. Bachelor thesis, TU Darmstadt
Doc
Comparison of forests and grasslands by observing ecological process rates
Vergleich der Ökosysteme Wald und Grasland anhand ökologischer Prozessraten
Irmscher V. M. (2020): Vergleich der Ökosysteme Wald und Grasland anhand ökologischer Prozessraten. Bachelor thesis, TU Darmstadt
Doc
Biodiversitätsschutz in Wäldern der gemäßigten Breiten Mitteleuropas: der Einfluss von Bewirtschaftungsintensität und Baumartenzusammensetzung
Leidinger J. (2020): Biodiversity conservation in temperate European forests: the roles of management intensity and tree species composition. Dissertation, Technische Universität München
More information:  mediatum.ub.tum.de
Doc
Leidinger J., Seibold S., Weisser W. W., Lange M., Schall P., Türke M., Gossner M. M. (2019): Effects of forest management on herbivorous insects in temperate Europe. Forest Ecology and Management 437, 232-245. doi: 10.1016/j.foreco.2019.01.013
More information:  doi.org
Doc
Meyer S. T., Heuss L., Feldhaar H., Weisser W. W., Gossner M. M. (2019): Land-use components, abundance of predatory arthropods, and vegetation height affect predation rates in grasslands. Agriculture, Ecosystems & Environment 270–271, 84-92. doi: 10.1016/j.agee.2018.10.015
More information:  doi.org
Doc
Gossner M. M., Falck K., Weisser W. W. (2019): Effects of management on ambrosia beetles and their antagonists in European beech forests. Forest Ecology and Management 437, 126-133. doi: 10.1016/j.foreco.2019.01.034
More information:  doi.org
Doc
Direkter und indirekter Einfluss von Landnutzung auf Schnecken-Gemeinschaften in Europa
Wehner K., Renker C., Brückner A., Simons N. K., Weisser W. W., Blüthgen N. (2019): Land‐use in Europe affects land snail assemblages directly and indirectly by modulating abiotic and biotic drivers. Ecosphere 10 (5), e02726. doi: 10.1002/ecs2.2726
More information:  doi.org
Doc
Ursachen für Insektenrückgänge in Grünland und Wald sind auf Landschaftsebene zu finden
Seibold S., Gossner M., Simons N., Blüthgen N., Müller J., Ambarli D., Ammer C., Bauhus J., Fischer M., Habel J. C., Linsenmair, K.-E., Nauss T., Penone C., Prati D., Schall, P., Schulze, E.-D., Vogt, J., Wöllauer S., Weisser W. (2019): Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. doi: 10.1038/s41586-019-1684-3
More information:  doi.org
Doc
Einfluss von Klimaparametern und der Landnutzung auf die Ökosystemdienstleistung des Dungabbaus und dessen Variabilität
Schneider J. (2018): Einfluss von Klimaparametern und der Landnutzung auf die Ökosystemdienstleistung des Dungabbaus und dessen Variabilität. Bachelorarbeit, TU Darmstadt
Doc
Bedeutung natürlicher Waldentwicklung für die Biodiversität
Seibold S. (2018): Bedeutung natürlicher Waldentwicklung für die Biodiversität. Allgemeine Forst Zeitschrift/Der Wald 20, 12-13
Doc
Kontrastierende Effekte verschiedener Landnutzungsarten im Grassland auf die Arten-Abundanz-Verteilung mehrerer Gruppen
Simons N., Lewinsohn T., Blüthgen N., Buscot F., Boch S., Daniel R., Gossner M.M., Jung K., Kaiser K., Müller J., Prati D., Renner S., Socher S., Sonnemann I., Weiner C., Werner M., Wubet T., Wurst S., Weisser W. W (2017): Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agriculture, Ecosystems and Environment 237, 143–153. doi: 10.1016/j.agee.2016.12.022
More information:  doi.org
Doc
Eine Intensivierung der Landwirtschaft in von Grassland dominierten Landschaften ohne Verlust von Artenvielfalt ist möglich
Simons N., Weisser W. W. (2017): Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nature Ecology & Evolution 1, 1136–1145. doi: 10.1038/s41559-017-0227-2
More information:  doi.org
Doc
Evaluierung einer integrativen Wald-Naturschutzstrategie: Kann man Totholz anreichern und fördert dies die Biodiversität?
Dörfler I. (2017): Evaluation of an integrative strategy in forests: does deadwood enrichment work and increase biodiversity? Dissertation, TU München
More information:  mediatum.ub.tum.de
Doc
Gossner M. M., Lewinsohn T., Kahl T., Grassein F., Boch S., Prati D., Birkhofer K., Renner S. C., Sikorski J., Wubet T., Arndt H., Baumgartner V., Blaser S., Blüthgen N., Börschig C., Buscot F., Diekötter T., Jorge L. R., Jung K., Keyel A. C., Klein A.-M., Klemmer S., Krauss J., Lange M., Müller J., Overmann J., Pašalić E., Penone C., Perović D. J., Purschke O., Schall P., Socher S. A., Sonnemann I., Tschapka M., Tscharntke T., Türke M., Venter P. C., Weiner C. N., Werner M., Wolters V., Wurst S., Westphal C., Fischer M., Weisser W. W., Allan E. (2016): Land-use intensification causes multitrophic homogenisation of grassland communities. Nature 540 (7632), 266–269. doi: 10.1038/nature20575
More information:  doi.org
Doc
Gossner M. M., Wende B., Levick S., Schall P., Floren A., Linsenmair K. E., Steffan-Dewenter I., Schulze E.-D., Weisser W. W. (2016): Deadwood enrichment in European forests – Which tree species should be used to promote saproxylic beetle diversity? Biological Conservation 201, 92–102. doi: 10.1016/j.biocon.2016.06.032
More information:  doi.org
Doc
Auf der Suche nach der optimalen Fangflüssigkeit: Variation in Invertebraten-Gemeinschaften, Proben- und DNA-Qualität
Gossner M. M., Struwe J.-F., Sturm S., Max S., McCutcheon M., Weisser W. W., Zytynska S. E. (2016): Searching for the Optimal Sampling Solution: Variation in Invertebrate Communities, Sample Condition and DNA Quality. PLoS ONE 11(2): e0148247. doi: 10.1371/journal.pone.0148247
More information:  doi.org
Doc
Predation along a land-use gradient in German grasslands
Geisthardt M. (2015): Predation along a land-use gradient in German grasslands. Master thesis, TU München
Doc
Predation along a land-use gradient in German forests
Kirchberger J. (2015): Predation along a land-use gradient in German forests. Master thesis, TU München
Doc
Wiesner K. R., Habel J. C., Gossner M. M., Loxdale H. D., Köhler G., Schneider A. R. R., Tiedemann R., Weisser W. W. (2014): Effects of habitat structure and land-use intensity on the genetic structure of the grasshopper species Chorthippus parallelus. The Royal Society Open Science. 1: 140133. doi: 10.1098/rsos.140133
More information:  doi.org

The so-called core projects of the BE emerged from the site selection project and the establishment of the exploratories (2006-2008). Since 2008, they have been providing the infrastructure and collecting important basic information on land use, diversity and ecosystem processes (long-term monitoring) for all projects. In addition, they coordinate project-wide activities such as various large-scale experiments.

Project in other funding periods

Picture: The photo shows a close-up of a longhorn beetle.
Invertebrates I (Core project)
#Animals  #2008 – 2011  #2006 – 2008  #Species biodiversity […]
Picture: The photo shows a close-up of a longhorn beetle.
Arthropods I (Core project)
#Animals  #2011 – 2014  #Species biodiversity […]
Picture: The photo shows a close-up of a longhorn beetle.
Arthropods (Core project)
#Animals  #2017 – 2020  #2014 – 2017  #Species biodiversity […]
Picture: The photo shows a close-up of a longhorn beetle.
Arthropods (Core project)
#Animals  #2020 – 2023  #Species biodiversity […]

Scientific assistants

Prof. Dr. Nico Blüthgen
Project manager
Prof. Dr. Nico Blüthgen
Technische Universität Darmstadt
Prof. Dr. Wolfgang Weisser
Project manager
Prof. Dr. Wolfgang Weisser
Technische Universität München (TUM)
Dr. Rafael Achury
Employee
Dr. Rafael Achury
Technische Universität München (TUM)
Dr. Michael Staab
Employee
Dr. Michael Staab
Technische Universität Darmstadt
Dr. Katja Wehner
Employee
Dr. Katja Wehner
Technische Universität Darmstadt
Samira Terzenbach
Employee
Samira Terzenbach
Technische Universität München (TUM)
Petra Freynhagen
Employee
Petra Freynhagen
Technische Universität München (TUM)
Top