Loading...
Picture: The photograph shows a round tall metal tray on a laboratory bench containing twenty-one cylindrical small glass or plastic containers with white screw caps. The containers are filled with soil samples. Next to the containers in the tray is a slip of paper with the word "unground" handwritten on it.

Soils and organisms living in soil contribute to the functioning of ecosystems with a wide range of essential services. They play, for example, a crucial role in carbon and nutrient cycling, form the habitat for soil organisms and determine plant nutrition. Soil properties can therefore influence species diversity, and vice versa species composition drive biogeochemical processes in soil. The response of biodiversity and ecosystem functioning to land use and management intensification will therefore depend on the interplay between abiotic soil properties, soil- and aboveground organisms. The core project soil provides crucial basic information on the abiotic soil environment, and observes and monitors soil functions. We have a special focus on soil organic matter formation, storage and turnover, due to its central role for soil fertility, climate change mitigation and adaptation.


  • Baseline characterization of soils and determination of abiotic soil properties in the Biodiversity Exploratories
  • Determination of soil functions related to carbon and nutrient cycling
  • Determination of litter fall and litter quality in forests

All core projects provide important basic information on land use, diversity and ecosystem processes (long-term monitoring). This information is made available to contributing projects in each phase for research on more detailed questions.

Service for other research projects

  • The core project soil collects information on soil properties and soil related ecosystem functions across all 300 Experimental Plots (EPs) of the Biodiversity Exploratories
  • Once per 3 years, we organize a large coordinated soil sampling. The soil sampling protocol considers the requirements of all soil related contributing projects. All participating groups work on the same homogenized composite soil samples. Since 2011 the soil sampling considered the mineral soil (0-10 cm) in all 300 EPs and the organic layer in all 150 forested EPs.

Service in the current funding period

In the 6th phase (2020-2023), the core project soil provides the following service:

  • Organisation of a coordinating soil sampling on all 300 EPs and all experimental sites (FOX, REX, LUX) in spring 2021 (had to be postponed due to Covid-19)
  • Maintenance of central soil archive with air dried samples from mineral soil and organic layer (collected in 2006, 2008, 2011, 2014, 2017, 2021) and litter fall (since 2015)
  • Contribution to synthesis activities with data and expertise
Experimental Plots
  • Monitoring of soil properties with samples taken during the coordinated soil sampling (pH, Bulk Density, Stone Content, Water Content, Root Content (grasslands), Estimated Clay Content, Stone Content, Soil Organic Carbon, Soil Organic Carbon Stocks, Soil Inorganic Carbon, Total Nitrogen, Total Sulphur, Olsen-extractable P)
  • Monitoring of aboveground litter fall with litter traps being emptied three times per year; Determination of litter fall for branches, twigs, fruits and leaves; CNS analyses of leaf litter
  • Activities of extracellular enzymes involved in the cycling of C, N, S and P (beta-glucosidase, N-acetyl-beta-D-glucosaminidase, sulfatase, phosphatase) in samples from all 150 forest EPs.
Forest Experiment (FOX):
  • Basic characterization of soils in gaps prior to cutting of the trees in winter 2019/20
  • Setup of litter-traps and litter collection on all plots from autumn 2020 onwards
  • Collection of soils from the FOX experiment after cutting the trees in autumn 2020 and spring 2021
  • Determination of pH, Bulk Density, Stone Content, Water Content, Estimated Clay Content, Soil Organic Carbon, Soil Organic Carbon Stocks, Soil Inorganic Carbon, Total Nitrogen, Total Sulfur, Olsen-extractable P, Activities of Extracellular Enzymes
  • Teabag decomposition experiment to characterize microbial activity from summer to autumn 2021
Grassland Experiments (REX, LUX):
  • Soil characterization with samples taken during the coordinated soil sampling in spring 2021 (Determination of pH, Bulk Density, Stone Content, Water Content, Estimated Clay Content, Soil Organic Carbon, Soil Organic Carbon Stocks, Soil Inorganic Carbon, Total Nitrogen, Total Sulfur, Olsen-extractable P)

Service in previous funding periods

  • Soil inventory at all 3000 grid plots (Grid-Plots, 2006-2008)
  • Activities of enzymes in total soil profiles (VIP, 2008)
  • Determination of soil respiration (lab incubations) (EP, 2011)
  • Isotopic signal (14C/13C) of respired CO2 (EP, 2011)
  • 13C content of soil organic matter
  • Determination of soil texture (EPs, 2011)
  • Root litter decomposition (EPs, 2011)
  • Root chemistry (EPs, 2011)
  • Water holding capacity (EPs, 2011)
  • 14C content of roots (VIPs, 2011)
  • 14C content of soil organic matter (VIPs, 2011, 2014, 2017)
  • Soil organic matter mineralisation (lab incubations) (EPs, 2014)
  • Microbial biomass (EPs, 2014)
  • Installation of mineral bags (EPs, 2015)
  • Cation Exchange Capacity (EP, 2017)
  • Nutrient leaching (EP, 2017)
  • Determination of soil respiration (field measurements) (EP, 2017)

Picture: The diagram shows information on the soil textures of the three exploration areas Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb.
Fig. 1: Soil texture strongly affects the water and nutrient cycling in soils and therefore also the plant growth. Results from the 2011 coordinated soil sampling show, that while the Schorfheide-Chorin soils are more sandy, the Hainich-Dün soils are silty to loamy and the Schwäbischer Alb soils are clay rich. There is a huge variation of soil textures in the Schorfheide-Chorin grasslands whereas the variation in soil texture in the Schorfheide-Chorin forests is very low.
Picture: The diagram shows information on the soil textures of the three exploration areas Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb.
Fig. 2: The soil pH values are a strong indicator for biological activity. Our monitoring shows that the soil pH is relatively stable over time. In the Biodiversity Exploratories, pH values in the forest plots increase in the order Schorfheide-Chorin, Hainich-Dün and Schwäbischer Alb. In the grasslands the gradient in pH values is smaller than in forest. However, there is a large shift in variation among regions. We found significantly higher pH variation in the Schorfheide-Chorin and the Schwäbische Alb grasslands compared to the grasslands in the Hainich-Dün.
Picture: The diagram shows information on the carbon stocks in the three exploration areas Schorfheide-Chorin, Hainich-Dün and Schwäbische Alb.
Fig. 3: In the Biodiversity Exploratories, organic carbon stocks in forest and grasslands are monitored since 2011. In 0-10 cm soil depth we found small but significant increases in organic carbon stocks in Schwäbischer Alb (ALB) und Hainich Dün (HAI) since 2011. In Schorfheide-Chorin the carbon stocks decreased probably because of a carbon loss in wetland soils, but the decrease was not significant.
Picture: The diagram shows information on how carbon input from leaf litter and carbon stocks in the forest floor are influenced by region and tree species.
Fig. 4: In the Biodiversity Exploratories, both leaf litter C input and forest floor C stock were significantly affected by region and tree species. However, the effects were much stronger for forest floor C stocks than for leaf litter C input (also see Fig. 7).
Picture: The diagram shows information on the influence of the timber harvest on the carbon stock of the forest.
Fig. 5: We found a weak negative effect of harvesting (SMI d) on leaf litter C inputs which is mediated by the crown projection area. Since leaf litter C inputs are positively related to forest C stocks, harvesting indirectly reduces forest C stocks. However, overall the importance of tree species selection (represented in the Risk component of the forest management intensity index) and the abiotic environment (parent material) for forest floor C stocks is much higher than that of harvesting. 2018 and 2019 spring and summer months were marked by drought conditions and we will study the effect of drought on the interplay between forest management, leaf litter C input and forest floor C stock
Picture: The diagram shows information on the residence time of the carbon stock in the organic layers of the investigated forest sites.
Fig. 6: We found a similar pattern for the C stock in the organic layer and its mean residence time which demonstrates that mean residence time is mainly determined by litter quality and not by differences in litter fall among different forest types.
Picture: The diagram shows information on the residence times of carbon, nitrogen and sulphur in the organic layers of the investigated forest sites.
Fig. 7: The mean residence times (MRT) of C in the organic layer of the forest sites affect the organic carbon storage in the whole soil profile. Mean residence times for C, N and S in organic layers are strongly correlated. A variance partitioning showed that most important for the turnover of C, N and N and S is the quality of the litter which is mainly determined by the tree selection (more analyses needed). A direct impact of the harvesting could not be observed.

Doc
Untersuchung lokaler Variationen von Kohlenstoffvorräten zur Beurteilung des potentiellen Einflusses von ausgelegtem Totholz
Baldeweg H. (2010): Untersuchung lokaler Variationen von Kohlenstoffvorräten zur Beurteilung des potentiellen Einflusses von ausgelegtem Totholz. Thesis, University Jena
Doc
Einfluss von Landnutzung und Standorteigen-schaften auf den oberirdischen Streueintrag
Berg J. (2016): Einfluss von Landnutzung und Standorteigen-schaften auf den oberirdischen Streueintrag. Bachelor thesis, University Jena
Doc
Effect of forest gaps on soil enzymatic activity and tea bag decomposition index in the Hainich-Dün Biodiversity Exploratory
Einfluss von Waldlücken auf die enzymatische Aktivität des Bodens und den Tea Bag Zersetzungsindex im Biodiversitätsexploratorium Hainich-Dün
Enyedi B. (2021): Effect of forest gaps on soil enzymatic activity and tea bag decomposition index in the Hainich-Dün Biodiversity Exploratory. Master thesis, University of Jena
Doc
Gan H. Y. (2019): The Effects of Land Use and Management on Belowground Carbon and Nutrient Interactions. Dissertation, University Jena.
More information:  doi.org
Doc
Gan H. Y., Schöning I., Schall P., Ammer C., Schrumpf M. (2020): Soil organic matter mineralization as driven by nutrient stoichiometry in soils under differently managed forest stands. Frontiers in Forests and Global Change 3:99. doi: 10.3389/ffgc.2020.00099
More information:  doi.org
Doc
Variability of soil organic carbon stocks in managed forests on the national and regional scale
Grüneberg E. (2014): Variability of soil organic carbon stocks in managed forests on the national and regional scale. Dissertation, University Freiburg
Doc
Die Mächtigkeit der organischen Auflage und der Tongehalt bestimmen die Menge des in unterschiedlich bewirtschafteten Buchenwäldern gespeicherten Bodenkohlenstoffs
Grüneberg E., Schöning I. , Hessenmöller D., Schulze E.-D., Weisser W. W. (2013): Organic layer and clay content control organic carbon stocks in density fractions of differently managed German beech forests. Forest Ecology and Management 303, 1-10. doi: 10.1016/j.foreco.2013.03.014
More information:  doi.org
Doc
Regionale Variabilität der organischen Kohlenstoffvorräte: Ein Vergleich zwischen Tiefenstufen und Bodenhorizonten
Grüneberg E., Schöning I., Kalko E.K.V., Weisser W. W. (2010): Regional organic carbon stock variability: A comparison between depth increments and soil horizons. Geoderma 155 (3-4), 426-433. doi: 10.1016/j.geoderma.2010.01.002
More information:  doi.org
Doc
Enzymaktivitäten in den Waldböden der Biodiversitäts-Exploratorien der Schwäbischen Alb und deren Reaktion auf Lochhiebe und Totholzanreicherung
Haugeneder L. (2021): Enzymaktivitäten in den Waldböden der Biodiversitäts-Exploratorien der Schwäbischen Alb und deren Reaktion auf Lochhiebe und Totholzanreicherung. Bachelor thesis, University Jena
Doc
Herold N. (2013): Land management and soil property effects on soil microbial communities and carbon storage in temperate forest and grassland systems. Dissertation, University Jena
More information:  www.db-thueringen.de
Doc
Enzymaktivitäten in Waldböden werden vorwiegend durch Bodeneigenschaften bestimmt
Herold N., Schöning I., Berner D., Haslwimmer H., Kandeler E., Michalzik B., Schrumpf M. (2014): Vertical gradients of potential enzyme activities in soil profiles of European beech, Norway spruce and Scots pine dominated forest sites. Pedobiologia 57 (3), 181–189. doi: 10.1016/j.pedobi.2014.03.003
More information:  doi.org
Doc
Einfluss von Standorteigenschaften und Grünlandbewirtschaftung auf mikrobielle Gemeinschaften in Böden
Herold N., Schöning I., Gutknecht J., Alt F., Boch S., Müller J., Oelmann Y., Socher S. A., Wilke W., Wubet T., Schrumpf M. (2014): Soil property and management effects on grassland microbial communities across a latitudinal gradient in Germany. Applied Soil Ecology 73, 41-50. doi: 10.1016/j.apsoil.2013.07.009
More information:  doi.org
Doc
Kohlenstoffspeicherung und Verweilzeiten von Kohlenstoff in Wald- und Grünlandböden
Herold N., Schöning I., Michalzik B., Trumbore S. E., Schrumpf M. (2014): Controls on soil carbon storage and turnover in German landscapes. Biogeochemistry 119 (1-3), 435-451. doi: 10.1007/s10533-014-9978-x
More information:  doi.org
Doc
Carbon-nitrogen-interaction in the rhizosphere after addition of glukose and ammoniumnitrate
Kohlenstoff-Stickstoff-Interaktion in der Rhizosphäre nach Zugabe von Glukose und Ammoniumnitrat
Knolle F. (2017): Kohlenstoff-Stickstoff-Interaktion in der Rhizosphäre nach Zugabe von Glukose und Ammoniumnitrat. Bachelor Thesis thesis, Max-Planck Institute for Biogeochemistry Jena
Doc
Bodenkohlenstoffvorräte in verschiedenen Waldbewirtschaftungsintensitäten im Hainich
Mehler K. (2008): Bodenkohlenstoffvorräte in verschiedenen Waldbewirtschaftungsintensitäten im Hainich. Thesis, Max-Planck-Institute for Biogeochemistry Jena
Doc
Die Bedeutung der Gesteindichte für die Berechnung von Boden-Lagerungsdichten und Boden-Kohlenstoffvorräten
Mehler K., Schöning I., Berli M. (2014): The importance of rock fragment density for the calculation of soil bulk density and soil organic carbon stock. Soil Science Society of America Journal 78 (4), 1186-1191. doi: 10.2136/sssaj2013.11.0480
More information:  doi.org
Doc
Priming effect induced by different root exudate components in temperate forest soils
Protti Sánchez F. (2020): Priming effect induced by different root exudate components in temperate forest soils. Master thesis, University of Bayreuth
Doc
Characterizing microbial activity in coniferous and deciduous forest soils
Schäfer F. (2013): Characterizing microbial activity in coniferous and deciduous forest soils. Bachelor thesis, University Jena
Doc
Verweilzeit von Kohlenstoff in Böden unterschiedlich bewirtschafteter Buchenwälder
Schöning I., Grüneberg E., Sierra C.A., Hessenmöller D., Schrumpf M., Weisser W.W., Schulze E.-D.(2013): Causes of variation in mineral soil C content and turnover in differently managed beech dominated forests. Plant and Soil 370 (1-2), 625-639. doi: 10.1007/s11104-013-1654-8
More information:  doi.org
Doc
Solly E. (2014): The role of fine root litter for organic matter storage in soils. University Jena, Dissertation
More information:  www.clib-jena.mpg.de
Doc
Solly E., Brunner I., Helmisaari H.-S., Herzog C., Leppälammi-Kujansuu J., Schöning I., Schrumpf M., Schweingruber F., Trumbore S., Hagedorn F. (2018): Unravelling the age of fine roots of temperate and boreal forests. Nature Communications 9:3006. doi: 10.1038/S41467-018-05460-6
More information:  doi.org
Doc
Der Abbau von Feinwurzeln im Boden
Solly E., Schöning I., Boch S., Kandeler E., Marhan S., Michalzik B. Müller J., Zscheischler J., Trumbore S. E., Schrumpf M. (2014): Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil 382 (1-2), 203-218. doi: 10.1007/s11104-014-2151-4.
More information:  doi.org
Doc
Mittleres Kohlenstoffalter in Feinwurzeln von gemäßigten Wäldern und Grünländern mit unterschiedlicher Bewirtschaftung
Solly E., Schöning I., Boch S., Müller J., Socher S. A., Trumbore S. E., Schrumpf M. (2013): Mean age of carbon in fine roots from temperate forests and grasslands with different management. Biogeosciences 10, 4833-4843. doi: 10.5194/bg-10-4833-2013
More information:  doi.org
Doc
Abbau von Wurzelstreu im Boden hängt in Buchenwäldern nicht von der Bodentiefe ab
Solly E., Schöning I., Herold N., Trumbore S., Schrumpf M. (2015): No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant and Soil 393 (1), 273-282. doi: 10.1007/s11104-015-2492-7
More information:  doi.org
Doc
Fine root productivity and C dynamics in temperate grasslands and forests with different land uses
Stolze K. (2013): Fine root productivity and C dynamics in temperate grasslands and forests with different land uses. Bachelor thesis, University Jena
Doc
Vergleich der Kohlenstoffvorräte der organischen Auflage und des Oberbodens von Buchen- und Edellaubholzwäldern im Naturraum Hainich-Dün-Hainleite
Türk M.-L. (2009): Vergleich der Kohlenstoffvorräte der organischen Auflage und des Oberbodens von Buchen- und Edellaubholzwäldern im Naturraum Hainich-Dün-Hainleite. Thesis, University Jena
Doc
Willms I. M., Bolz S. H., Yuan J., Krafft L., Schneider D., Schöning I., Schrumpf M., Nacke H. (2021): The ubiquitous soil verrucomicrobial clade “Candidatus Udaeobacter” shows preferences for acidic pH. Environmental Microbiology Reports 13 (6), 878-883. doi: 10.1111/1758-2229.13006
More information:  doi.org
Doc
Die weltweit verbreiteten Bodenbakterien der Gruppe Candidatus Udaeobacter profitieren von der Freisetzung von Antibiotika
Willms I. M., Rudolph A. Y., Göschel I., Bolz S. H., Schneider D., Penone C., Poehlein A., Schöning I., Nacke H. (2020): Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere 5: e00186-20. doi: 10.1128/mSphere.00186-20
More information:  doi.org
Doc
Verbreitung von medizinisch relevanten Antibiotikaresistenzgenen und mobilen genetischen Elementen in Wald- und Grünlandböden
Willms I. M., Yuan J., Penone C., Goldmann K., Vogt J., Wubet T., Schöning I., Schrumpf M., Buscot F., Nacke H. (2020): Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic Elements in Soils of Temperate Forests and Grasslands Varying in Land Use. Genes 11 (2), 150. doi: 10.3390/genes11020150
More information:  doi.org
Doc
Einflüsse unterschiedlicher Bewirtschaftung auf Kohlenstoffkonzentrationen und Kohlenstoffvorräte in Waldböden der Biodiversitäts-Exploratorien Schorfheide-Chorin, Hainich-Dün und Schwäbische Alb
Zilensek F. L. (2016): Einflüsse unterschiedlicher Bewirtschaftung auf Kohlenstoffkonzentrationen und Kohlenstoffvorräte in Waldböden der Biodiversitäts-Exploratorien Schorfheide-Chorin, Hainich-Dün und Schwäbische Alb. Bachelor thesis, University Jena

The so-called core projects of the BE emerged from the site selection project and the establishment of the exploratories (2006-2008). Since 2008, they have been providing the infrastructure and collecting important basic information on land use, diversity and ecosystem processes (long-term monitoring) for all projects. In addition, they coordinate project-wide activities such as various large-scale experiments.

Project in other funding periods

Picture: The photograph shows a round tall metal tray on a laboratory bench containing twenty-one cylindrical small glass or plastic containers with white screw caps. The containers are filled with soil samples. Next to the containers in the tray is a slip of paper with the word "unground" handwritten on it.
Soil (Core project)
#Soil biology & Element cycling  #2017 – 2020  #2014 – 2017  #2011 – 2014  #2008 – 2011  #2006 – 2008  

Scientific assistants

Dr. Marion Schrumpf
Project manager
Dr. Marion Schrumpf
Max-Planck-Institut für Biogeochemie
Prof. Dr. Susan Trumbore
Project manager
Prof. Dr. Susan Trumbore
Max-Planck-Institut für Biogeochemie
Dr. Ingo Schöning
Employee
Dr. Ingo Schöning
Max-Planck-Institut für Biogeochemie
Steffen Ferber
Employee
Steffen Ferber
Max-Planck-Institut für Biogeochemie
Theresa Klötzing
Employee
Theresa Klötzing
Max-Planck-Institut für Biogeochemie
Top